
Automatic parking with Q-Learning

Leonardo Lai1

Abstract— Automatic parking is one of the fundamental
challenges on the path towards self-driving vehicles. In this
work I show how a reinforcement learning method, namely Q-
learning, can be used to deal with the problem of automatic
parking. The algorithm is then implemented in a simulated
environment to prove its effectiveness.

I. INTRODUCTION

Parking is one of the most common tasks when driving a
car, yet it is quite difficult for many people, especially new
drivers; mistaken estimation of the space between the car
and the surroundings is often a cause of accidents. For this
reason, many automobile manufacturers equip their vehicles
with parking assistance systems (e.g. distance sensors), to
make the procedure easier; nonetheless, these solutions still
require a strong degree of human interaction. In the last
years, more and more producers are showing a growing
interest in self-driving cars, seeing them as a viable pos-
sibility for the future of transportation. In this perspective,
they are investing a lot of resources to research and develop
autonomous systems, including fully automated parking so-
lutions. The advantages are several: improved safety, faster
parking and, ultimately, less burden for the driver.

Solutions based on machine learning look very promising
in this direction, thanks to their ability to learn from the
environment and work in various scenarios. Moreover, the
recent developments in hardware technologies enable ML
algorithms to be deployed in embedded environments, in-
cluding vehicles. Within the ecosystem of ML approaches,
reinforcement learning is particularly suitable to include a
model of the safe and harmful behaviours of an agent, in
this case a car (e.g. mapping collisions to negative rewards).
Researchers have started adopting this paradigm, obtaining
interesting results. Shalev-Shwartz et al. applied reinforce-
ment learning to the problem of forming long-term driving
strategies, accounting for safety and potential unpredictable
agents [3]. Sallab et al. proposed a deep RL framework
including RNN for car lane keeping that works even in
partially observable scenarios [4].
A survey on this topic has been published by Kiran et al [5].

II. PROBLEM

A. Model

A generic parking scenario is modeled by considering a
bounded region containing elements of three types: a vehicle,
a parking slot (i.e. the target final configuration for the
car) and some obstacles (i.e. objects that reduce the set of

1Leonardo Lai, Sant’Anna School of Advanced Studies, Pisa, Italy
leonardo.lai@santannapisa.it

legal configurations). Both the car and the obstacles can
be represented by arbitrarily complex polygons. A model
example of a typical parking situation is depicted in Fig. 1.
A collision event is geometrically determined by a partial
overlapping of the car polygon with any obstacles, as a
result of a maneuver. Going out the region boundaries can
be treated equal to a collision, as long as the allowed region
is reasonably large for parking. The model considers only
fixed obstacles (like other parked cars, or structures), not
moving ones (like people); anyway, a simple and practical
solution to deal with them would be to halt and wait until
they eventually go away.

In order to fit the model in a reinforcement learning
framework, it is necessary to map the model to the concepts
of state, actions and rewards. In this case, the current
state is fully determined by the position and orientation
of the car. To have a finite number of states, the space is
discretized with a tunable granularity: e.g. 25 cm for the
coordinates and 4 deg for the orientation angle. The actions
are represented by a finite set of maneuvers, which are a
combination of forward/backward displacement and left/right
turning. As shown in Fig. 2, I consider elementary shifts of
±50/100/150 cm and turns with a radius of 5/10 m. This
representation is clearly not exhaustive, but any sequence
of complex maneuvers can be approximated quite well by a
composition of these actions. Note that shifts of 100 and 150
cm are actually redundant, but shorten the length of these
sequences, making the algorithm learn faster. The rewarding
scheme is very simple: a large reward (+1000) is given when
an action leads to the final target position, a large punishment
(−200) is issued on collisions and a small penalty (−5) for
each maneuvering step. The latter prevents stalls and loops,
encouraging the car to reach the end as quickly as possible.

Fig. 1: Environment model:
car, parking slot, obstacles

Fig. 2: Action space: possible
vehicle maneuvers



B. Q-learning

Q-learning is an off-policy reinforcement learning algo-
rithm to determine the optimal action-selection policy for any
state [1]. A Q(s, a) matrix stores a quality score associated
to every state-action pair. Q is not known a priori, but
it is built iteratively, attempting to maximize the expected
cumulative reward over the next steps from the current state
s; Q is updated after every interaction with the environment,
combining the current knowledge about the quality of the
successive state s′, and the reward r associated with the
selected action. The update rule is formulated as follows:

Q(s, a) = (1− α)Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)

]
where α and γ are two hyperparameters called learning

rate and discount factor, respectively. At the start, Q is ini-
tialized with all values equal to 0. The training phase consists
in simulating different episodes many times, updating the Q
matrix according to the aforementioned rule. At each step,
the next action is selected with a ε-greedy policy.
The set of possible states and actions for the car agent
corresponds to that described in the previous section.
Since the actions are discrete, a sufficiently long and varied
training ensures the convergence of Q-learning [1].
In practice, I defined a custom loss-like metric δk to monitor
the convergence of the model at iteration k: starting from an
initial value ∆, δk is computed from δk−1 (previous value)
and the variation of Q(s, a) if it was updated at time k:

δk =


∆ for k = 0

δk−1 for k > 0 ∧ s′ illegal
(1− ζ)δk−1 + ζ|Qk(s, a)−Qk−1(s, a)| for k > 0 ∧ s′ legal

As shown in Fig. 3, this value rapidly decays during the
first episodes, until the agent eventually reaches the final state
for the first time; here δk bounces up, as an effect of the
Q matrix updates, but resumes decreasing afterwards until
convergence. The training phase stops when δk settles to a
sufficiently stable value, or alternatively after a maximum
number of episodes.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed approach has been validated in simulation1,
in a scenario with 30 actions and 54000 states (positions
and orientations) like the one in Fig. 1. Although the Q-
learning theorem ensures convergence after every state/action
has been considered many (i.e. infinitely many) times, a
practical rule of thumb is to visit every state-action pair
about 10 times; clearly, this value may vary with problem
difficulty. From empirical observation, an episode typically
explores a ten of different states before terminating in a
successful parking or a crash. Hence, according to the rule
above, one may expect the training to be approximately as
long as Eref = 1.6M episodes to achieve reasonable results.

The training factor τ is defined normalizing the actual
training length w.r.t. the such reference number: τ = Etrain

Eref
.

1The simulator was entirely developed in C++, without ML frameworks.
Code publicly available at: github.com/leoll2/Autoparking

Experiments have been performed to measure the network
effectiveness, that is the fraction of successful parking at-
tempts, as a function of the training length, along with the
average number m̄ of maneuvers (actions) required to reach
the end. The results are shown in Table I: it turns out that
the network starts behaving occasionally well at τ = 0.3,
and rapidly improves its success rate as it keeps learning
until τ = 1; afterwards it slowly continues making progress,
eventually peaking at τ = 10 when it becomes fully reliable,
that is crashes are no longer observed. Note the trend of m̄: it
is initially low because the network can only resolve simple
cases, where the car is already near the target position, then
increases as it deals with more complex cases, and finally
returns decreasing thanks to path optimization.

Other experiments were executed to determine the optimal
hyperparameters α, γ and ε, varying them while keeping
constant τ = 1 (Tab. IIa, IIb, IIc). Since the environment is
deterministic, the optimal learning rate α is 1 as expected.
Different discount factors γ, instead, do not appear to cause
significant performance variations. As for the ε-greedy ε, any
value is acceptable except for very low ones (no exploration).

IV. CONCLUSIONS AND FUTURE WORKS

This articles showed the feasibility and effectiveness of
Q-learning to tackle the problem of automatic parking. The
next step could be to exploit deep Q-learning and other
generalization-oriented techniques to deal with maps (obsta-
cle layouts) not previously practiced in simulation [6][7].

Fig. 3: Monitoring Q-matrix convergence over time with δk

τ episodes m̄ success (%)
0.3 486 000 - 0
0.4 648 000 5.25 12.2
0.5 810 000 8.30 33.0
0.7 1 134 000 12.43 81.6
1 1 620 000 10.81 98.6
3 4 860 000 9.85 99.9
10 16 200 000 9.54 100

TABLE I: Relation between train episodes and success rate

α m̄
0.0 -
0.3 10.48
0.7 9.84
1.0 9.56

(a) Learning rate

γ m̄
0.3 9.61
0.6 9.82
0.9 9.67
1.0 9.70

(b) Discount factor

ε m̄
0.0 18.58
0.1 9.82
0.3 9.60
0.5 9.70
0.7 9.61
1.0 9.69

(c) ε-greedy epsilon



REFERENCES

[1] Watkins, C. J. & Dayan, P. (1992). Q-learning. Machine learning,
8(3-4), 279-292.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533.

[3] Shalev-Shwartz, S., Shammah, S., Shashua, A. (2016). Safe, multi-
agent, reinforcement learning for autonomous driving.

[4] Sallab, A. E., Abdou, M., Perot, E., Yogamani, S. (2017). Deep
reinforcement learning framework for autonomous driving. Electronic
Imaging, 2017(19), 70-76.

[5] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A.,
Yogamani, S., Pérez, P. (2020). Deep Reinforcement Learning for
Autonomous Driving: A Survey

[6] Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J. (2018).
Quantifying generalization in reinforcement learning.

[7] Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., Song, D.
(2018). Assessing generalization in deep reinforcement learning.


